Preparation and Spectral Properties of Disubstituted [2,2]Metacyclophanes

Akihiko Tsuge, *,1 Tetsuji Moriguchi, 1 Shuntaro Mataka,² and Masashi Tashiro²

Department of Chemistry, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804, Japan, and Institute of Advanced Material Study, Kyushu University, Kasuga 81 6, Japan

Received February **23,** *1995*

Cyclophane compounds provide intriguing models for investigation of intramolecular and transannular electronic effects in the forced proximity and particular orientation of two π -systems. Staab and co-workers have reported a large series of donor-acceptor paracyclophane systems including **[2.2lparacyclophane-quinhydrones3** and covered the relationship between donor-acceptor orientation and charge-transfer transition.⁴ We have also shown the synthesis and the spectra of some $[2.2]$ quinhydronophanes.⁵ On the other hand, we have also been very interested in a transannular interaction between two aromatic rings in [2.2lmetacyclophane (MCP) systems because this interaction is obviously responsible for unusual reactivity of [2.2lMCPs. For the purpose of its quantitative estimation, we have prepared [2.2lMCPs with an azobenzene unit and discussed their spectral properties in terms of a transannular interaction.6 In order to gain a deeper insight into this interaction, we decided to prepare [2.2lMCPs with a different kind of functional group on each ring because we were particularly interested in knowing how the π -electron state in the substituted [2.2lMCPs could be affected by the electron-donor or the electron-acceptor nature of the substituent through transannular interaction. In this paper, we report on the synthesis of substituted $[2.2]$ -MCPs and the correlation between their spectra and Hammett substituent constants.

Electrophilic substitution of [2.2lMCPs **(la)** is sometimes accompanied by side reactions such as transannular ring closure, resulting in difficulties in the separation of the substituted [2.2lMCPs. Thus, we first prepared the [2.2]MCP diazonium salt which is a potential intermediate for the synthesis of 5-substituted $[2.2] MCPs.7$ Nitration of 1a with fuming HNO₃ gave a nitro[2.2]MCP **(1b)** in 85% yield.⁸ After reduction of **1b** with $Pd - C/H_2$, the resulting amino compound was treated with isopentyl nitrite in EtOH and THF to afford a diazonium salt **(IC)** in **87%** yield. The details on synthetic applications of this salt will be described elsewhere. Pyrolysis of the salt **IC** at **100** "C under reduced pressure **(1** Torr) for **4** h afforded fluoro[2.2lMCP **(la)** in **98%** yield. And methoxy[2.2lMCP **(le)** was obtained by stirring salt **IC** in MeOH **(78%** yield). Furthermore, iodine was introduced by treating salt **1c** with I_2 to give iodo[2.2]MCP $(1f)$ in 72% yield;

(1) Kyushu Institute of Technology.

(2) **Kyushu University.**

(3) Staab, H. A,; Rebafka, W. *Chem. Ber.* **1977,110, 3333.**

(4) For example: Staab, H. A.; Haffner, H. Chem. Ber. 1977, 110,
3358. Staab, H. A.; Taglieber, V. Chem. Ber. 1977, 110, 3366.
(5) (a) Tashiro, M.; Koya, K.; Yamato, T. J. Am. Chem. Soc. 1982,

- **104, 3707. (b) Tashiro, M.; Koya, K.; Yamato, T.** *J.* **Am.** *Chem. SOC.* **1983,105, 6650.**
- (6) (a) Tsuge, A.; Moriguchi, T.; Mataka, S.; Tashiro, M*. Chem. Lett.*
1**992**, 579. (b) Tsuge, A.; Moriguchi, T.; Mataka, S.; Tashiro, M. J.
Chem. Soc., Perkin Trans. 1 1**993**, 2211.

Table 1. Absorption Maxima^a for [2.2]MCPs **la,b, Id-h, and 2a-d**

compound	λ_{max} (nm)	$log \epsilon$
1a	298	1.94
1b	346	4.18
1d	303	2.08
1e	314	2.81
1f	302	2.51
1g	332	3.22
1h	302	2.49
2a	342	4.06
2 _b	367	4.94
2c	325	3.55
2d	331	3.58

In CHC13 at 25 "C.

however, when $1a$ was reacted with I_2 in the presence of $HIO₄$ and $H₂SO₄$, separation from the diiodo compound was necessary, resulting in only **10%** yield of **lf.9** Reduction of **1glo** with LiAlH4 gave methyl[2.2lMCP **(lh)** in **31%** yield accompanied by a hydroxymethyl derivative in **63%** yield. Compound **2a** was easily prepared by nitration of **1f** according to a reported method.⁷ However, in nitration of 1e with Cu(NO₃)₂, a hydropyrenequinone compound, a ring closure product, was only identified instead of **2b.** Thus, **2a** was treated with sodium methoxide to afford the desired **2b** in **59%** yield. Formylation of **Id** and **lh** with dichloromethyl methyl ether gave **2c** and **2d** in **76** and **81%** yield, respectively.

The electronic spectra of [2.2]MCPs provide information about the nature of transannular electronic interaction in their π -electron system. The absorption maxima of these substituted [2.2lMCPs are summarized in Table **1.** The *UV* spectrum of [2.2lMCP **(la)** is designated as the "cyclophane spectrum", which is indicated by the loss of fine structure of the benzenoid band and the bathochromic shift with a decrease in intensity as compared with open chain model compounds. The UV spectra of the monosubstituted [2.2lMCPs can be characterized by bathochromic **shifts** in comparison with those of [2.2]MCP **la.** It corresponds to the shift of benzene on monosubstitution. Although, as it is well-known Hammett-type correlations with electronic spectral data are usually poor; the Hammett substituent constants¹¹ are widely used to express the electronic effects of substituent. Thus, λ_{max} values for the monosubstituted [2.2]MCPs are plotted against σ_p of the substituent as shown in Figure **1. A** V-shaped line was obtained similarly, as in the case of monosubstituted benzene systems. We have paid a great deal of attention to the absorption properties of

(11) Hammett, L. P. *J. Am. Chem. SOC.* **1937, 59, 96.**

⁽⁷⁾ Tashiro, M.; Mataka, S.; Takezaki, Y.; Takeshita, M.; Arimura, T.; Tsuge, A.; Yamato, T. J. Org. Chem. 1989, 54, 451.
(8) Tsuge, A.; Yamato, T. J. Org. Chem. 1989, 54, 451.
(8) Tsuge, A.; Moriguchi, T.; Mataka, S.; Tas

SOC. Jpn. **1994, 67,** 277.

⁽⁹⁾ Tashiro, M.; Yamato, T.; Kobayashi, K. *J. Org. Chem.* **1984,49, 3380.**

⁽¹⁰⁾ Tsuge, A.: Ishii, T.; Mataka, S.; **Tashiro, M.** *J. Chem. Res.* **1992, 312.**

Figure 1. Correlation between λ_{max} and the $\sigma_p(\sigma_p)$ constant of the substituent in the [2.2lMCPs system.

disubstituted 12.21MCPs from a viewpoint of an effect of the electronic properties of two kinds of substituents on the spectra. Here, the difference in the σ_p values of the functional groups is defined as the substituent constant for disubstituted [2.2lMCPs **(2a-d),** which is also shown in Figure 1. Interestingly, λ_{max} values for **2a-d** show a linear relationship against their defined σ_p values (σ_p) . For example, **2b** exhibits a great bathochromic shift which extends into the visible region. When the two substituents are of the same type such as in **2a** and **2c,** their spectra are similar to those of the monosubstituted [2.2lMCP **lb** and **lg** because each of the substituents decreases the conjugation of the other. In **2d,** both substituents do not possess strong electron-donating or electron-accepting properties, resulting in a smaller bathochromic shift as compared with that of **2b.** Compound **2b** is expected to possess some interesting properties because it has two aromatic rings with a strong electron-withdrawing group and a moderately strong electron-releasing group in close proximity. For example, **2b** exhibits an emission maximum at 562 nm, which is the first $[2.2] MCP$ showing a strong fluorescence.¹² The estimated dipole moment of **2b** is 6.193 DI3 which is attributable to a push-pull effect of the substituents through a transannular interaction. Such a change in a π -electron state must influence the NMR spectra of these [2.2]MCPs. In fact, while the internal methyl protons of $[2.2] MCP$ **la** appear at δ 0.56 (the shielding effect of the opposite ring), the signals for two kinds of methyl protons of **2b** appear at δ 0.34 and 0.78, respectively. Such a significant difference in the chemical shifts results from extensive deviation of π -electron density between two aromatic rings due to a cooperative effect of the electrondonor and the electron-acceptor substituents.

From these results, it can be concluded that the [2.2]-MCP system is a nonplanar molecule with one conjugated system due to a strong transannular interaction between two aromatic rings.

Experimental Section

All melting points are uncorrected. 'H NMR spectra were recorded at 500 MHz in CDC13. Mass spectra were obtained at 75 eV using a direct-inlet system. Column chromatography was carried out on silica gel (Wako gel, C-300).

Pyrolysis of Diazonium Salt IC. After **IC** (140 mg, 0.40 mmol) was pyrolyzed at 100 $^{\circ}$ C under reduced pressure (1 Torr), the crude product was chromatographed using CH_2Cl_2 as an eluent, giving **5-fluoro-8,16-dimethyl[2.2lmetacyclophane (Id)** (92 mg, 90%) as colorless prisms (MeOH): mp 212-213 °C; ¹H NMR 6 0.54 (3H, *s),* 0.74 (3H, *s),* 2.60-3.10 (BH, m), 6.60-7.20 (5H, m); MS m/z 254 (M⁺). Anal. Calcd for C₁₈H₁₉F: C, 85.00; H, 7.53. Found: C, 85.20; H, 7.61.

Preparation of 6-Methoxy-8,16-dimethyl[2.2lmetacyclophane (le). The solution of diazonium salt **IC** (140 mg, 0.40 mmol) in MeOH (20 mL) was stirred at room temperature under a nitrogen atmosphere. After 42 h, the reaction mixture was evaporated *in vacuo* to leave the residue, which on chromatography using toluene as an eluent afforded **le** (83 mg, 78%) as a colorless plate (MeOH): mp 135-137 °C; ¹H NMR δ 0.53 (3H, s), 0.74 (3H, *s),* 3.77 (3H, *s),* 2.60-3.10 (8H, m), 6.70-7.20 (3H, m), 6.71 (2H, s); MS m/z 266 (M⁺). Anal. Calcd for C₁₉H₂₂O: C, 85.67; H, 8.32. Found: C, 85.53; H, 8.43.

Preparation of 6-Iod0-8,16-dimethyl[2.21metacyclophane (1f). To a suspension of I_2 (110 mg, 1.6 mmol), 18-crown-6 (30 mg, 0.1 mmol), and potassium acetate (90 mg, 0.9 mmol) in $CHCl₃ (10 mL)$ was added diazonium salt $1c (140 mg, 0.4 mmol)$. After the reaction mixture was stirred at room temperature for 3 h, it was poured into 10% aqueous sodium hydrogen sulfite. The organic layer was washed with water, dried over $MgSO_4$, and evaporated *in vacuo* to leave the residue, which was chromatographed with toluene as an eluent to give **If** (105 mg, 73%) as colorless prisms (hexane): mp $190-192$ °C (lit.⁹ mp $190 192 °C$).

Reduction of lg. To a suspension of LiAlH4 (270 mg, 7.2 mmol) and AlCl₃ (990 mg, 7.2 mmol) in THF (20 mL) was added the solution of **lg** (150 mg, 0.51 mmol) in THF (6 mL). After the reaction mixture was refluxed for 10 h, it was poured into a large amount of ice-water and extracted with $CH₂Cl₂$. The extract was washed with water, dried over MgSO₄, concentrated, and chromatographed, using toluene as an eluent, giving 5,8,- **16-trimethyl[2.2]metacyclophane (lh)** (40 mg, 31%) as colorless prisms (cyclohexane): mp $162-165$ °C; ¹H NMR δ 0.56 (3H, s), 0.63 (3H, s), 2.24 (3H, s), $2.60 - 3.05$ (8H, m), $6.70 - 7.20$ (3H, m), 6.92 (2H, s); MS m/z 250 (M⁺). Anal. Calcd for C₁₉H₂₂: C, 91.14; H, 8.86. Found: C, 91.06; H, 8.65.

Preparation of 5-Methoxy-13-nitro-8,16-dimethyl[2.2] metacyclophane (2b). To a solution of sodium (230 mg, 9.8 mmol) in MeOH (10 mL) were added a solution of **2a** (200 mg, 0.49 mmol) in DMF (40 mL) and copper iodide (190 mg, 1.0 mmol). The reaction mixture was refluxed at 100 "C under an argon atmosphere. After 4 h, the mixture was poured into a large amount of ice-water and extracted with toluene. The extract was washed with water, dried over MgS04, and evaporated *in uacuo.* The resulting residue was chromatographed using CHzClz as an eluent to afford crude **2b.** Recrystallization from toluene gave **2b** (90 mg, 59%) as pale yellow prisms: mp 310-313 "C; 'H NMR 6 0.34 (3H, **s),** 0.78 (3H, **s),** 2.00-2.90 (BH, m), 3.70 (3H, s), 6.52 (2H, s), 7.80 (2H, *s);* MS *mlz* 311 (M+). Anal. Calcd for C₁₉H₂₁NO₃: C, 73.29; H, 6.80; N, 4.50. Found: C, 73.57; H, 6.55; N, 4.68.

Formylation of Id. To a solution of **Id** (50 mg, 0.20 mmol) and dichloromethyl methyl ether (1.0 g, 8.7 mmol) in CH_2Cl_2 (20 mL) was added dropwise TiCl₄ (1.7 g, 9.0 mmol) at 0 °C. After the reaction mixture was stirred for 10 min, it was poured into a large amount of ice-water. The organic layer was washed with water, dried over MgS04, and evaporated *in vacuo,* and the residue was chromatographed using toluene as an eluent. The product obtained from the eluate was recrystallized from hexane to give **5-fluoro-13-formyl-8,16-dimethyl[2.2lmetacyclo**phane **(2c)** (43 mg, 79%) as colorless prisms: mp 229-230 °C; 1 H NMR δ 0.48 (3H, s), 0.81 (3H, s), 2.60–3.00 (8H, m), 6.87 $(2H, d, J = 9.16 \text{ Hz}),$ 7.25 $(2H, s), 9.85 (1H, s); \text{MS } m/z \, 282 \, (\text{M}^+).$ Anal. Calcd for C19H190F: C, 80.82; H, 6.78. Found: C, 81.06; H, 6.74.

Formylation of lh. Compound **lh** (20 mg, 0.08 mmol) was formylated as described in the preparation of **2c,** giving 5-formylas colorless prisms (hexane): mp $196-199$ °C; ¹H NMR δ 0.48 (3H, s), 0.69 (3H, s), 2.26 (3H, s), 2.60-3.10 (BH, m), 6.93 (2H, s), 7.63 (2H, s), 9.83 (lH, s); MS *mlz* 278 (M+). Anal. Calcd for C2oH220: C, 86.29; H, 7.97. Found: C, 86.27; H, 7.99.

509503419

⁽¹²⁾ A very weak fluorescence from 12.2lMCP was measured by a single photon counter: (a) Hikida, T.; Ichimura, T.; Mori, Y. Chem. *Phys.* Lett. 1974,27,548. (b) Shizuka, H.; Ogiwara, T.; Morita, T. Bull. Chem. *SOC. Jpn.* 1975, 48, 3385.

⁽¹³⁾ The calculation was done with MM3-92 and MOPAC93.